
*Projected.

Type 2 Diabetes is a CV Risk Factor
Additive Effects of Hypertension, Hypercholesterolemia, and Smoking

DOCUMENTED DEFECTS IN TYPE 2 DIABETES MELLITUS
(RIZZA RA: *DIABETES* 2010; 59:2697)

- Enhanced endogenous glucose production, and lack of postprandial suppression.
- Increased gluconeogenesis ? Increased glycogenolysis. Impaired insulin mediated hepatic glucose uptake
- Reduced hepatic glycogen synthesis presumably due to reduced hepatic glucokinase.
- Delayed insulin secretion
- Failure of suppression of Glucagon
What Drives the Concern

- Increased risk of mortality in both types of Diabetes
- Increased risk of mortality at FBG > 100 mgs/dl., and associated with a 6 year shorter life span in a 50 year old individual with DM
- Elevation of glycated hemoglobin correlate with mortality and CV events in a linear manner. 1% increase in HbA1c increase risk (20%-30%) for CV events or death.
- Elevated HbA1c (>5%) may increase risk in non-diabetic patients.
<table>
<thead>
<tr>
<th>Year, Author</th>
<th>Journal</th>
<th>Key Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1922, Levine SA</td>
<td>JAMA</td>
<td>High incidence of glycosuria in MI</td>
</tr>
<tr>
<td>1929, Levine SA</td>
<td>Medicine</td>
<td>Casual relationship between high glucose levels and coronary thrombosis</td>
</tr>
<tr>
<td>1931, Cruickshansk</td>
<td>BMJ</td>
<td>Vascular degeneration as common cause for both glycosuria and CHD</td>
</tr>
<tr>
<td>1976, Opie LH</td>
<td>Clin Endocrinol Metab</td>
<td>Glucose intolerance and the high circulating FFA are thought to be harmful to the ischaemic tissue</td>
</tr>
</tbody>
</table>
Relationship Between Glycemic Control and Coronary Heart Disease Events in Type 2 Diabetes Patients (Ages 65 to 74)

Pathophysiology

- Hyperglycemia induced disruption NO production through endothelial dysfunction.
- FFA induced impairment of vasodilation.
- Up regulation of TLR leading to excessive white cell-response leading to ischemic reperfusion injury.
- Enhanced Monocyte adhesion and differentiation - into macrophages and uptake od lipids to become –foam cells.
Obesity

- Adipocyte hypertrophy

Inflammation

- Innate immune activation
- Hepatic steatosis

Macrophages

- Decreased: Adiponectin

- Increased: Resistin, MCP-1

- Increased: IL-6, TNF-α, IL-1β

- Increased: PAI-1, RBP4

Artery

Muscle

Liver

Atherosclerosis

Insulin resistance
Plasma glucose concentration and vascular risks

- **Dysglycemia**
- **Diabetes**

Relative Risk

Plasma Glucose

- **CVD**
- **Microvascular**

Treatment

Prevention
Good Glycemic Control (Lower HbA$_{1c}$) Reduces Complications

<table>
<thead>
<tr>
<th></th>
<th>DCCT</th>
<th>Kumamoto</th>
<th>UKPDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HbA$_{1c}$</td>
<td>9 \rightarrow 7%</td>
<td>9 \rightarrow 7%</td>
<td>8 \rightarrow 7%</td>
</tr>
<tr>
<td>Retinopathy</td>
<td>76%</td>
<td>69%</td>
<td>17-21%</td>
</tr>
<tr>
<td>Nephropathy</td>
<td>54%</td>
<td>70%</td>
<td>24-33%</td>
</tr>
<tr>
<td>Neuropathy</td>
<td>60%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Macrovascular disease</td>
<td>44%*</td>
<td>-</td>
<td>16%*</td>
</tr>
</tbody>
</table>

* not statistically significant

Cardiovascular Events

Non-Fatal MI, Stroke or CVD Death

Risk reduction 57%
95% CI: 12, 79
Log-rank P = 0.018

Cumulative Incidence

Years from Study Entry

Number at Risk

Intensive: 705 686 640 118
Conventional: 721 694 637 96

©2006. American College of Physicians. All Rights Reserved.
Cumulative Incidence of First of Any Event

Risk reduction 42%
95% CI: 19, 63
Log-rank P = 0.016

Number at Risk

<table>
<thead>
<tr>
<th>Years from Study Entry</th>
<th>Intensive</th>
<th>Conventional</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>705</td>
<td>683</td>
</tr>
<tr>
<td></td>
<td>683</td>
<td>629</td>
</tr>
<tr>
<td></td>
<td>629</td>
<td>113</td>
</tr>
</tbody>
</table>

DCCT/EDIC

©2006. American College of Physicians. All Rights Reserved.
UKPDS 80: “Legacy” effect of intensive glucose control on MI

N = 4209 with newly diagnosed T2DM

10-year post-trial follow-up, between-group A1C differences lost after 1 year SU/Insulin treatment resulted in persistent ↓24% in microvascular disease (P = 0.001)

*Log-rank P

The United Kingdom Prospective Diabetes Study (UKPDS): Post trial monitoring

Legacy Effect of Earlier Glucose Control

After median 8.5 years post-trial follow-up

<table>
<thead>
<tr>
<th>Aggregate Endpoint</th>
<th>1997</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any diabetes related endpoint</td>
<td>RRR: 12%</td>
<td>9%</td>
</tr>
<tr>
<td></td>
<td>P: 0.029</td>
<td>0.040</td>
</tr>
<tr>
<td>Microvascular disease</td>
<td>RRR: 25%</td>
<td>24%</td>
</tr>
<tr>
<td></td>
<td>P: 0.0099</td>
<td>0.001</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>RRR: 16%</td>
<td>15%</td>
</tr>
<tr>
<td></td>
<td>P: 0.052</td>
<td>0.014</td>
</tr>
<tr>
<td>All-cause mortality</td>
<td>RRR: 6%</td>
<td>13%</td>
</tr>
<tr>
<td></td>
<td>P: 0.44</td>
<td>0.007</td>
</tr>
</tbody>
</table>

RRR = Relative Risk Reduction, P = Log Rank

Multiple Targets for Diabetes Therapies

- Dietary Carbohydrates
- Intestine: α-glucosidase inhibitors
- Kidney: ↑ glucose excretion
- SGLT2
- Liver: Metformin, TZDs, Dual PPAR
- Muscle: glucose uptake and utilization
- Pancreas: Insulin secretion
 - Sulfonylureas / meglitinides / d-phenylalanine deriv.
 - DPP-IV
 - GLP-1
- Fat: ↓ lipolysis
 - TZDs
 - Dual PPAR
- ↓ Blood Glucose
<table>
<thead>
<tr>
<th>Class</th>
<th>Mechanism</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Cost</th>
</tr>
</thead>
</table>
| Biguanides | • Activates AMP-kinase
 • ↓ Hepatic glucose production | • Extensive experience
 • No hypoglycemia
 • Weight neutral
 • ? ↓ CVD | • Gastrointestinal
 • Lactic acidosis
 • B-12 deficiency
 • Contraindications | Low |
| SUs / Meglitinides | • Closes KATP channels
 • ↑ Insulin secretion | • Extensive experience
 • ↓ Microvasc. risk | • Hypoglycemia
 • Weight gain
 • Low durability
 • ? Ischemic preconditioning | Low |
| TZDs | • PPAR-γ activator
 • ↑ insulin sensitivity | • No hypoglycemia
 • Durability
 • ↓ TGs, ↑ HDL-C
 • ? ↓ CVD (pio) | • Weight gain
 • Edema / heart failure
 • Bone fractures
 • ? ↑ MI (rosi)
 • ? Bladder ca (pio) | High |
| α-GIs | • Inhibits α-glucosidase
 • Slows carbohydrate absorption | • No hypoglycemia
 • Nonsystemic
 • ↓ Post-prandial glucose
 • ? ↓ CVD events | • Gastrointestinal
 • Dosing frequency
 • Modest ↓ A1c | Mod. |
<table>
<thead>
<tr>
<th>Class</th>
<th>Mechanism</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPP-4 inhibitors</td>
<td>• Inhibits DPP-4</td>
<td>• No hypoglycemia</td>
<td>• Modest ↓ A1c • ? Pancreatitis • Urticaria</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>• Increases GLP-1, GIP</td>
<td>• Well tolerated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLP-1 receptor agonists</td>
<td>• Activates GLP-1 R</td>
<td>• Weight loss</td>
<td>• GI</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>• ↑ Insulin, ↓ glucagon</td>
<td>• No hypoglycemia</td>
<td>• ? Pancreatitis • Medullary cancer • Injectable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ↓ gastric emptying</td>
<td>• ? Beta cell mass</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ↑ satiety</td>
<td>• ? CV protection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amylin mimetics</td>
<td>• Activates amylin receptor</td>
<td>• Weight loss</td>
<td>• GI / insulin • Injectable • Hypo w/ insulin • Dosing frequency</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>• ↓ glucagon</td>
<td>• ↓ PPG</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ↓ gastric emptying</td>
<td>• Modest ↓ A1c</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ↑ satiety</td>
<td>• Injectable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bile acid sequestrants</td>
<td>• Bind bile acids</td>
<td>• No hypoglycemia</td>
<td>• GI</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>• ↓ Hepatic glucose production</td>
<td>• Nonsystemic</td>
<td>• Modest ↓ A1c</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ↓ Post-prandial glucose</td>
<td>• Dosing frequency</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ↓ CVD events</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dopamine-2 agonists</td>
<td>• Activates DA receptor</td>
<td>• No hypoglycemia</td>
<td>• Modest ↓ A1c • Dizziness/syncope • Nausea • Fatigue</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>• Modulates hypothalamic control of metabolism</td>
<td>• ? ↓ CVD events</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ↑ insulin sensitivity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class</td>
<td>Mechanism</td>
<td>Advantages</td>
<td>Disadvantages</td>
<td>Cost</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>--------------</td>
</tr>
</tbody>
</table>
| Insulin | • Activates insulin receptor
• ↑ peripheral glucose uptake | • Universally effective
• Unlimited efficacy
• Microvascular risk | • Hypoglycemia
• Weight gain
• ? Mitogenicity
• Injectable
• Training requirements
• “Stigma” | Variable |
| SGLT2 inhibitors | • Reduce renal glucose reabsorption | • Globally Effective | • Increased frequency of UTI
• Increase in Glucagon | |
Failure to Achieve Goals

- Complex disease; Difficult lifestyle
- Natural progression of disease
- Low health literacy/ lower social strata
- Multiple medications – costs associated
- Lack of suppression of Glucagon
- Drug side effects
 - Weight gain
 - Hypoglycemia
 - GI side effects
 - Change in blood pressure
- Cardiovascular safety
- Restricted use (Elderly, CHF, Renal Impairment)
- Failure of health professionals
Major Trials Pertaining to CV Outcomes in Patients With Diabetes Mellitus Type -2

- ACCORD: Lowering HbA1c < 6 %
- ADVANCE: Lowering HbA1c < 6.5 %
- VADT: Lowering HbA1c to 1.5 % below standard therapy in older men
- UKPDS: Diet vs Medications
- DCCT: Intensified insulin therapy: HbA1c 7.4% vs 9.1% in Type1 DM
- DCCT-EDIC: 17 year Follow up of DCCT
- BARI 2D: Use of insulin provision vs Insulin sensitizers
- Heart 2D: Prandial vs Basal Insulin Therapy
- LOOK –AHEAD: Intensive Lifestyle Intervention
Impact of Intensive Therapy for Diabetes: Summary of Major Clinical Trials

<table>
<thead>
<tr>
<th>Study</th>
<th>Microvasc</th>
<th>CVD</th>
<th>Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>UKPDS</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>DCCT / EDIC*</td>
<td>↓</td>
<td>↓</td>
<td>▼</td>
</tr>
<tr>
<td>ACCORD</td>
<td>↓</td>
<td>▼</td>
<td>↑</td>
</tr>
<tr>
<td>ADVANCE</td>
<td>↓</td>
<td>▼</td>
<td>▼</td>
</tr>
<tr>
<td>VADT</td>
<td>↓</td>
<td>▼</td>
<td>▼</td>
</tr>
</tbody>
</table>

Kendall DM, Bergenstal RM. © International Diabetes Center 2009

* in T1DM
Metabolic Memory and Glycemic Legacy

UKPDS and VADT

Start of intensive therapy in UKPDS

Ideal course = early and sustained glycemic control

Start of intensive therapy in VADT

Drives risk of Complications

Risk of complications continues despite glycemic control

Survival as a function of HbA1c in people with Type 2 Diabetes: Retrospective Cohort Study Lancet 375:481, 2010

Figure 1. Adjusted hazard ratios for all-cause mortality by HbA1c deciles in people given oral combination and insulin-based therapies
What really works

– Treat Hyperglycemia to keep HbA1c < 8 %
– Choose right agent to treat Hyperglycemia and avoid over insulinization
– GLP-1 based therapies (?)
– Treat Dyslipidemia

 • 13% decline in mortality with 1 mmol reduction in LDL-C and 21% reduction in major vascular event in people with diabetes over a 4 year period.
– Treat Hypertension: sBP < 13 mm Hg
– Aspirin : Mostly secondary prevention
Healthy eating, weight control, increased physical activity

Initial drug monotherapy
- **Efficacy (**↓** HbA1c)**
- **Hypoglycemia**
- **Weight**
- **Side effects**
- **Costs**

Two drug combinations
- **Efficacy (**↓** HbA1c)**
- **Hypoglycemia**
- **Weight**
- **Major side effect(s)**
- **Costs**

Healthy eating, weight control, increased physical activity

Metformin
- High
- Low risk
- Neutral/loss
- GI / lactic acidosis
- Low

If needed to reach individualized HbA1c target after ~3 months, proceed to 2-drug combination (order not meant to denote any specific preference):

Metformin +
- **Sulfonylurea**
 - High
 - Moderate risk
 - Gain
 - Hypoglycemia
 - Low

Metformin +
- **Thiazolidinedione**
 - High
 - Low risk
 - Gain
 - Edema, HF, fx’s
 - High

Metformin +
- **DPP-4 Inhibitor**
 - Intermediate
 - Low risk
 - Neutral
 - Rare
 - High

Metformin +
- **GLP-1 receptor agonist**
 - High
 - Low risk
 - Loss
 - GI
 - High

Metformin +
- **Insulin (usually basal)**
 - Highest
 - High risk
 - Gain
 - Hypoglycemia
 - Variable

If needed to reach individualized HbA1c target after ~3 months, proceed to 3-drug combination (order not meant to denote any specific preference):

Metformin +
- **Sulfonylurea**
 - High
 - Moderate risk
 - Gain
 - Hypoglycemia
 - Low

Metformin +
- **Thiazolidinedione**
 - High
 - Low risk
 - Gain
 - Edema, HF, fx’s
 - High

Metformin +
- **DPP-4 Inhibitor**
 - Intermediate
 - Low risk
 - Neutral
 - Rare
 - High

Metformin +
- **GLP-1 receptor agonist**
 - High
 - Low risk
 - Loss
 - GI
 - High

Metformin +
- **Insulin (usually basal)**
 - Highest
 - High risk
 - Gain
 - Hypoglycemia
 - Variable

If combination therapy that includes basal insulin has failed to achieve HbA1c target after 3-6 months, proceed to a more complex insulin strategy, usually in combination with 1-2 non-insulin agents:

Insulin
- (multiple daily doses)
Approach to management of hyperglycemia:

- Patient attitude and expected treatment efforts:
 - More stringent: highly motivated, adherent, excellent self-care capacities
 - Less stringent: less motivated, non-adherent, poor self-care capacities

- Risks potentially associated with hypoglycemia, other adverse events:
 - Low
 - High

- Disease duration:
 - Newly diagnosed
 - Long-standing

- Life expectancy:
 - Long
 - Short

- Important comorbidities:
 - Absent
 - Few / mild
 - Severe

- Established vascular complications:
 - Absent
 - Few / mild
 - Severe

- Resources, support system:
 - Readily available
 - Limited

SOME REVELATIONS:

- **GOOD NEWS** (Diabetes Care 2012;35:1252)
 - Death rates among both U.S men and women with diabetes declined substantially between 1997 – 2006 reducing the absolute difference between adults with and without diabetes
 - Death rates declined by 40 %, and all cause mortality declined by 23 %
 - No difference in rate of decline in mortality between men and women
 - Discovery of a Glucose lowering neurocircuit connecting gut, brain and liver that directly reduces hepatic glucose production independent of involvement of insulin (Nature Medicine 2012;18:950)

- Intensive Glucose Control might not reduce the risk of clinical renal outcomes even while affecting surrogate markers (Arch Intern Med 2012;172(10):761)

- ARB’s not superior to ACE i's, and combination may be detrimental, as is addition of direct renin inhibitors

- Newer BP target for BP Control based KEEP Study (140/90 mm Hg) [Arch Intern Med 2012;172(1):41]; ACCORD study (N Engl J Med 2010;362:1575)
<table>
<thead>
<tr>
<th></th>
<th>Hypoglycemia</th>
<th>Wt. Gain</th>
<th>Edema</th>
<th>GII effects</th>
<th>Lactic Acidosis</th>
<th>Liver Toxicity</th>
<th>Use in Renal Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glyburide</td>
<td>4+</td>
<td>+</td>
<td>0</td>
<td>±</td>
<td>0</td>
<td>±</td>
<td>-</td>
</tr>
<tr>
<td>Gliclazide</td>
<td>2+</td>
<td>+</td>
<td>0</td>
<td>±</td>
<td>0</td>
<td>±</td>
<td>+</td>
</tr>
<tr>
<td>Glimepiride</td>
<td>2+</td>
<td>+</td>
<td>0</td>
<td>±</td>
<td>0</td>
<td>±</td>
<td>+</td>
</tr>
<tr>
<td>Repaglinide</td>
<td>1+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nateglinide</td>
<td>1+</td>
<td>?</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Metformin</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2+</td>
<td>+</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Acarbose</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>±</td>
<td>±</td>
</tr>
<tr>
<td>Rosiglitazone</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>±*</td>
<td>+</td>
</tr>
<tr>
<td>Pioglitazone</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>±*</td>
<td>+</td>
</tr>
</tbody>
</table>

* Liver enzyme monitoring recommended in product monographs

Adapted from Lebovitz H: Endocrinol & Metab Clinics of NA; 30 (4)909-933
Most Intensive	Less Intensive	Least Intensive
6.0%| 7.0%| 8.0%

Psychosocioeconomic considerations

Highly motivated, adherent, knowledgeable, excellent self-care capacities, and comprehensive support systems

Less motivated, nonadherent, limited insight, poor self-care capacities, and weak support systems

Hypoglycemia risk

Low | Moderate | High

Patient age, y

40 | 45 | 50 | 55 | 60 | 65 | 70 | 75

Disease duration, y

5 | 10 | 15 | 20

Other comorbid conditions

None | Few or mild | Multiple or severe

Established vascular complications

None | Cardiovascular disease | Early microvascular | Advanced microvascular